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loT enables for increased awareness, security, power-efficiency, ...

traditional data analysis techniques alone are not adequate!
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loT enables for increased awareness, security, power-efficiency, ...
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AMiIs [1,2,3,4 VNs [5,6]
* demand-response e autonomous driving
e scheduling [7] e platooning
* micro-grids e accident detection [9]
* detection of medium size blackouts [8] * variable tolls [9]
* detection of non technical losses e congestion monitoring [10]
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large loT systems are complex

VNs
Characteristics [15]: 6 support for mobility
1. edge location 7 real-time interactions
2. location awareness 8. predominance of wireless
3. low latency 9 heterogeneous
4. geographical distribution 10. interoperability / federation
5. large-scale 11. interaction with the cloud
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WHICH IMPLIES

(AMONG THINGS)

traditional data analysis techniques alone are not adequate! [13,14]

1. does the infrastructure allow for billions of
readings per day to be transferred continuously?

2. the latency incurred while transferring data, does
that undermine the utility of the analysis?

A . 3. isitsecure to concentrate all the datain asingle
T e ; place? [11] _'
O = 4 4. isitsmart to give away fine-grained data? [12]

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures 7



Agenda

* The data streaming processing paradigm



Motivation

DBMS vs. DSMS

2 Query

3 Query
results
Query Processing Query Processing
1 Data [
Main Memory Data Continuous Query
Query results
Main Memory
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<
OO
Disk
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Before we start... about data streaming and Stream Processing Engines (SPEs)

An incomplete list of SPEs (cf. related work in [16]):

StreamCloud I’ I’
The Aurora Project o <‘ Z !
Medusa Borealis = Espe rT;dC h Spof K !
I >
COUGAR STanfordstREamdatAManager ,’é} APACHE time ,’

:I: I STORM" @ I
I |
elegraph NiagaraCQ ! FIink,’

Berkeley Database Research

Covering all of them / discussing which use cases are best for each one out of scope...
the following show connection between what is being presented and a certain SPE
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data stream: unbounded sequence of tuples sharing the same schema

Example: vehicles’ speed reports

Field  [Field

g cont Let’s assume each source
time (secs) - (e.g., vehicle) produces
speed (Km/h) double and delivers a timestamp
X coordinate double sorted stream

Y coordinate double

A 803 703 X, VY,

A 800 555 X; Y, A 8:07 343 X; Y;

\ \ \
time
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continuous query (or simply query): Directed Acyclic Graph (DAG) of
streams and operators

op
(1+in, 1+ out streams)
sink op
source op / (1+ in streams)
(1+ out str<‘ms) OP /
OP OP OP
/ OP
stream
OP OP
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data streaming operators

Two main types:

OP  Stateless operators
e do not maintain any state
* one-by-one processing

* if they maintain some state, such state does not evolve depending
on the tuples being processed

OP e Stateful operators

* maintain a state that evolves depending on the tuples being
processed

* produce output tuples that depend on multiple input tuples




stateless operators

— Filter < Filter / route tuples based on one (or more) conditions

—> Map —— Transform each tuple

> Union —— Merge multiple streams (with the same schema) into one

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures 14



stateless operators

——> Filter :

%Map%

: 2 Union ——>

Vincenzo Gulisano

APACHE

STORM"

Consider this example. Suppose you have a stream called "stream" that contains the fields "x", "y", and "z". To run a filter
MyfFilter that takes in "y" as input, you would say:

stream.each(new Fields("y"), new MyFilter())
Suppose the implementation of MyFilter is this:

public class MyFilter extends BaseFilter {
public boolean isKeep(TridentTuple tuple) {
return tuple.getinteger(@) < 10;
}

This will keep all tuples whose "y" field is less than 10. The TridentTuple given as input to MyFilter will only contain the "y"

field. Note that Trident is able to project a subset of a tuple extremely efficiently when selecting the input fields: the
projection is essentially free.

Let's now look at how "function fields" work. Suppose you had this function:

public class AddAndMultiply extends BaseFunction {
public void execute(TridentTuple tuple, TridentCollector collector) {
int il = tuple.getInteger(@);
int i2 = tuple.getInteger(1);
collector.emit(new Values(il + i2, il =* i2));

source: http://storm.apache.org/releases/2.0.0-SNAPSHOT/Trident-tutorial.html
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Flink

stateless operators S——— Descriton

Map Takes one element and produces one element. A map function that doubles the values of the input
DataStream — DataStream stream:

DataStream<Integer> dataStream = //...
dataStream.map(new MapFunction<Integer, Integer>() {
@0verride

% Fllter . public Integer map(Integer value) throws Exception {

return 2 * value;

}
1
FlatMap Takes one element and produces zero, one, or more elements. A flatmap function that splits
DataStream —» DataStream sentences to words:

dataStream. flatMap(new FlatMapFunction<String, String>() {
@0verride
% l\/l ap % public void flatMap(String value, Collector<String> out)
throws Exception {
for(String word: value.split("™ ")){
out.collect(word);

}
}
13N
Filter Evaluates a boolean function for each element and retains those for which the function returns
. ‘[ J’ * O n ; DataStream — DataStream true. A filter that filters out zero values:

dataStream.filter(new FilterFunction<Integer>() {
@0verride
public boolean filter(Integer value) throws Exception {
return value != 9;

}
1

source: https://ci.apache.org/projects/flink/flink-docs-release-1.0/apis/streaming/index.html
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stateless operators

——> Filter : Sp Q rK

Transformation Meaning
map(func) Return a new DStream by passing each element of the source DStream through a function func.
flatMap(func) Similar to map, but each input item can be mapped to 0 or more output items.
M filter(func) Return a new DStream by selecting only the records of the source DStream on which func returns true.
ap repartition(numPartitions) Changes the level of parallelism in this DStream by creating more or fewer partitions.
union(otherStream) Return a new DStream that contains the union of the elements in the source DStream and otherDStream.

source: http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

: 2 Union ——>
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stateful operators

> Aggregate > Aggregate information from multiple tuples
Trem (e.g., max, min, sum, ...)

]oin — Join tuples coming from 2 streams given a certain predicate
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stateful operators APACHE

STORM"

stream.aggregate(new Fields("val2"), new Sum(), new Fields("sum"))

The output stream would only contain a single tuple with a single field called "sum", representing the sum of all "val2"
fields in that batch.

With grouped streams, the output will contain the grouping fields followed by the fields emitted by the aggregator. For

example:

stream.groupBy(new Fields("vall"))
.aggregate(new Fields("val2"), new Sum(), new Fields('sum"))

In this example, the output will contain the fields "val1" and "sum”.

source: http://storm.apache.org/releases/2.0.0-SNAPSHOT/Trident-tutorial.html

.S‘,cxnr‘li(\Z

count() Return a new DStream of single-element RDDs by counting the number of elements in
each RDD of the source DStream,

reduce(func) Return a new DStream of single-element RDDs by aggregating the elements in each
RDD of the source DStream using a function func (which takes two arguments and
returns one). The function should be associative so that it can be computed in parallel.

source: http://spark.apache.org/docs/latest/streaming-programming-
guide.html#ttransformations-on-dstreams

Flink

Aggregations Rolling aggregations on a keyed data stream. The

KeyedStream — difference between min and minBy is that min returns

DataStream the minimun value, whereas minBy returns the element
that has the minimum value in this field (same for max

and maxBy).

keyedStream.
keyedStream.
keyedStream.
keyedStream.
keyedStream.
keyedStream.
keyedStream.
keyedStream.
keyedStream.
keyedStream.

sum(9);
sum("key");
min(Q);
min("key");
max(9);
max("key");
minBy(9);
minBy("key");
maxBy(9);
maxBy("key");

source: http://spark.apache.org/docs/latest/streaming-programming-

guide.html#ttransformations-on-dstreams
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o

Wait a moment!

po.

2

if streams are unbounded, how can we aggregate or join?



windows and stateful analysis [16]

Stateful operations are done over windows:
* Time-based (e.g., tuples in the last 10 minutes)
* Tuple-based (e.g., given the last 50 tuples)

Usually applications rely on time-based sliding windows

l | time
[8:00,9:00)

l |

[8:20,9:20)

l |
[8:40,9:40)

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures
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we assumed each source

time-based sliding window aggregation (count) | produces and delivers a
timestamp sorted stream!

Counter:1 Counter: 3 What happens if this is not
Counter: 2 Counter: 4
the case?
8:05 &:15 8:22 8:45 9:05
90— » » -
l | Ime
[8:00,9:00) l
Output: 4
Counter: 3
8:22 8:45 9:05
e ovov
| time
[8:20,9:20)
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windows and stateful analysis

// Reduce last 3@ seconds of data, every 10 seconds

Spark

val windowedWordCounts = pairs.reduceByKeyAndWindow((a:Int,b:Int) => (8 + b), Seconds(38), Seconds(10))

Some of the common window operations are as follows. All of these operations take the said two parameters - windowLength and slideinterval.

Transformation
window(windowLength, slidelnterval)

countByWindow(windowLength,
sligeinterval)

reduceByWindow|(func, windowLength,

sligeinterval)

Vincenzo Gulisano

Meaning

Return a new DStream which is computed based on windowed batches of the source DStream.
Return a sliding window count of elements in the stream,

Return a new single-element stream, created by aggregating elements in the stream over a siiding

interval using func. The function should be associative so that it can be computed correctly in
paraliel.

Transformation

Tumbling time
window

KeyedStream —
WindowedStream

Sliding time
window
KeyedStream —
WindowedStream

Tumbling count
window

KeyedStream —
WindowedStream

Sliding count
window
KeyedStream —
WindowedStream

The data streaming paradigm and its use in Fog architectures

Description

Defines a window of 5 seconds, that "tumbles”. This means
that elements are grouped according to their timestamp in
groups of 5 second duration, and every element belongs to
exactly one window. The notion of time is specified by the
selected TimeCharacteristic (see time).

keyedStream. t imeWindow(Time.seconds(5));

Defines a window of 5 seconds, that "slides” by 1 seconds.
This means that elements are grouped according to their
timestamp in groups of 5 second duration, and elements can
belong to more than one window (since windows overlap by
at most 4 seconds) The notion of time is specified by the
selected TimeCharacteristic (see time).

keyedStream. timeWindow(Time.seconds(5), Time.secon
ds(1));

Defines a window of 1000 elements, that "tumbles”. This
means that elements are grouped according to their arrival
time (equivalent to processing time) in groups of 1000
elements, and every element belongs to exactly one window.

keyedStream.countWindow(1009);

Defines a window of 1000 elements, that "slides” every 100
elements. This means that elements are grouped according
to their arrival time (equivalent to processing time) in groups
of 1000 elements, and every element can belong to more
than one window (as windows overlap by at most 8900
elements).

keyedStream.countWindow(1000, 100)

23

Flink



basic operators and user-defined operators

Besides a set of basic operators, SPEs usually allow the user to define
ad-hoc operators (e.g., when existing aggregation are not enough

Flink

Aggregations Rolling aggregations on a keyed data stream. The difference between min and minBy is that min
KeyedStream -+ DataStream returns the minimun value, whereas minBy returns the element that has the minimum value in this

field (same for max and maxBy).

keyedStream.sun(Q);
keyedStream.sun("key");
keyedStream.min(Q);
keyedStream.min("key");
keyedStream.max(Q);
keyedStream.max("key");
keyedStream.min8y(@);
keyedStream.minBy("key");
keyedStream.maxBy(@);
keyedStream.maxBy ("key");

Vincenzo Gulisano

Window Apply Applies a general function to the window as a whole. Below is a function that manually sums the
WindowedStream —» elements of a window.

e Note: If you are using a windowAll transformation, you need to use an AllWindowFunction instead
AlWindowedStream —» ' ’
DataStream

windowedStrean.apply (mew WindowFunction<Tuple2<String,Integer>, Integer, Tuple, W

indowa() {
public void apply (Tuple tuple,
Window window,
Iterable<Tuple2<String, Integer>> values

Collector<integer> out) throws Exception {
int sum = 9;
for (value t: values) {
sum += t.f1;
}
out.collect (new Integer(sum));

12 H

allwindowedStream.apply (mew AlINindowFumction«<Tuple2<String,Integer>,
ndow>() {
public void apply (Window window,

Iterable<Tuple2<String, Integer>> values,
Collector<Integer> out) throws Exception {

int sum = 0;

for (value t:

t

values) (
A1

SURm 4=

}
out.collect (new Integer(sum));

i

The data streaming paradigm and its use in Fog architectures
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sample query

A 803 703 X, Y,

A 800 555 X, VY, A 807 343 X, VY,

H | | | time

For each vehicle, raise an alert if the speed of the latest report is more
than 2 times higher than its average speed in the last 30 days.



sample query

Aggregate | Join . Filter
Compute average Join on Check
speed for each vehicle id condition

vehicle during the

CTRE i 0ces
time (secs) m vehicle id

speed (Km/h) vehicle id time (secs) vehicle id
X coordinate time (secs) avg speed (Km/h) time (secs)
Y coordinate avg speed (Km/h) speed (Km/h) speed (Km/h)
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sample query

i

)

Notice:

* the same semantics can be defined in several ways (using different
operators and composing them in different ways)

* Using many basic building blocks can ease the task of distributing
and parallelizing the analysis (more in the following...)



Why data streaming, then?

Parallel &
Distributed

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures
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Vincenzo Gulisano

Sample query that

e.g. validates data /
raises alarms...

—> A

°°°OOO°°°O°°°
O

The data streaming paradigm and its use in Fog architectures

Expressive

Online

Parallel &
Distributed
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Challenges and research questions

Distributed deployment

Parallel deployment

Ordering and determinism

Shared-nothing vs shared-memory parallelism
Load balancing

Elasticity

Fault tolerance

0 N o Uk wh e

Data sharing



Before we start...

Following examples are from vehicular networks

Road-side unit
RSU

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures

,* Server

» Vehicle
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1 - Distributed deployment — where to place a given operator? [17,4,18,19]

= A K

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures
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2 - Parallel deployment — how do we parallelize the analysis? [20,21]

il
= =P

i~ >~

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures
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3 — Ordering and determinism [22,23,24]

M
A 800 555 X, Y, ‘

Tl E R 1 e What if tuple with
timestamp 8:00
arrives after tuple
with timestamp 8:077

A 807 343 X, VY, A 803 703 X, VY,
A 807 343 X, VY,
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4 — shared-nothing vs. shared-memory parallelism [25]

=M A How to take advantage of multi-core
- ] > architectures?
- A (T
T How to boost inter-node parallelism
L  andintra-node parallelism? _‘
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5 — load balancing & state transfer [20,26]

= A > ==

= A SR |

If we shift the processing of a certain subset of

tuples from node A to node B, how do transfer
its previous state?
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6 — elasticity [20,27]

— —
= e ag &8 =)- B &
Ao B TR, A A=

A
‘ How / when to provision or
decommission new resources depending

on the analysis’ costs fluctuations?

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures
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7 — fault tolerance [16, 28, 29]

=l
RE g
o)

How to replace a failed node minimizing
recovery time (making it transparent to
the end user)?
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8 — data sharing (differential privacy) [2,30,31,32]

o=

E - average speed over a window of one houir...
o=

o= E _"'9

How to prevent privacy leaks?

We could aggregate by RSU!

Vincenzo Gulisano The data streaming paradigm and its use in Fog architectures

= = Suppose we are interested in publishing vehicles’
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8 — data sharing (differential privacy)

e .
== |
Ga = . \v/vvr?;tt?fr:cs)r: elr;t\./ehicle s
b= = 5

connected to a certain RSU?
EE

Whether a certain mechanism preserves or not the privacy
of the underlying data depends on the knowledge of the

adversary

Differential privacy assumes the worst case scenario!
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e Conclusions
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Humans

Millions of years
of evolution

Vincenzo Gulisano

Store information
Iterate multiple times over data
Think, do not rush through decisions

e "Hard-wired” routines
* Real-time decisions
* High-throughput / low-latency

Millions of
sensors

The data streaming paradigm and its use in Fog architectures

A

-' Should | (really)
have an extra
piece of cake?

Danger!!!
Run!!!
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Computers

(cyber-physical / loT systems)

Years / Decades B
of evolution

Vincenzo Gulisano

D
" What traffic

Databases, data .mining + Store information congestion
{ techniques... * Iterate multiple times over data patterns can |
‘ * Think, do not rush through decisions observe
frequently?

e Continuous analysis
* Real-time decisions
* High-throughput / low-latency

- " Don’t take
Millions of _
over, car in
sensors :
opposite lane!
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