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IoT	enables	for	increased	awareness,	security,	power-efficiency,	...

large	IoT	systems	are	complex	

traditional	data	analysis	techniques	alone	are	not	adequate!



AMIs	[1,2,3,4] VNs	[5,6]

• demand-response
• scheduling	[7]
• micro-grids
• detection	of	medium	size	blackouts	[8]
• detection	of	non	technical	losses
• ...
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• autonomous	driving
• platooning
• accident	detection	[9]
• variable	tolls	[9]
• congestion	monitoring	[10]
• ...

IoT	enables	for	increased	awareness,	security,	power-efficiency,	...
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AMIs VNs
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large	IoT	systems	are	complex	

The	data	streaming	paradigm	and	its	use	in	Fog	architectures

Characteristics	[15]:
1. edge	location
2. location	awareness
3. low	latency			
4. geographical	distribution
5. large-scale

6. support	for	mobility
7. real-time	interactions
8. predominance	of	wireless
9. heterogeneous
10. interoperability	/	federation
11. interaction	with	the	cloud
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traditional	data	analysis	techniques	alone	are	not	adequate!	[13,14]

The	data	streaming	paradigm	and	its	use	in	Fog	architectures

1. does	the	infrastructure	allow	for	billions	of	
readings	per	day	to	be	transferred	continuously?

2. the	latency	incurred	while	transferring	data,	does	
that	undermine	the	utility	of	the	analysis?

3. is	it	secure	to	concentrate	all	the	data	in	a	single	
place?	[11]

4. is	it	smart	to	give	away	fine-grained	data?	[12]	
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Main	Memory

Motivation

DBMS	vs.	DSMS

Disk

1 Data

Query	Processing

3 Query	
results

2 Query

Main	Memory

Query	Processing

Continuous
QueryData Query	

results
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Before	we	start...	about	data	streaming	and	Stream	Processing	Engines	(SPEs)

10

An	incomplete	list	of	SPEs	(cf.	related	work	in	[16]):

time

Borealis
The Aurora Project

STanfordstREamdatAManager

NiagaraCQ

COUGAR

StreamCloud

Covering	all	of	them	/	discussing	which	use	cases	are	best	for	each	one	out	of	scope...	
the	following	show	connection	between	what	is	being	presented	and	a	certain	SPE
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data	stream:	unbounded	sequence	of	tuples	sharing	the	same	schema
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Example:	vehicles’	speed	reports

time

Field Field

vehicle	id text

time	(secs) text

speed	(Km/h) double

X	coordinate double

Y	coordinate double

A 8:00 55.5 X1 Y1

Let’s	assume	each	source	
(e.g.,	vehicle)	produces	
and	delivers	a	timestamp	
sorted	stream

A 8:07 34.3 X3 Y3

A 8:03 70.3 X2 Y2
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continuous	query	(or	simply	query):	Directed	Acyclic	Graph	(DAG)	of	
streams	and	operators
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OP

OP

OP

OP OP

OP OP

source	op	
(1+	out	streams)

sink	op	
(1+	in	streams)

stream

op	
(1+	in,	1+	out	streams)
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data	streaming	operators

Two	main	types:
• Stateless	operators
• do	not	maintain	any	state
• one-by-one	processing
• if	they	maintain	some	state,	such	state	does	not	evolve	depending	
on	the	tuples	being	processed

• Stateful	operators
• maintain	a	state	that	evolves	depending	on	the	tuples	being	
processed
• produce	output	tuples	that	depend	on	multiple	input	tuples
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OP

OP
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stateless	operators
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Filter ...

Map

Union...

Filter	/	route	tuples	based	on	one	(or	more)	conditions

Transform	each	tuple

Merge	multiple	streams	(with	the	same	schema)	into	one
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stateless	operators
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Filter ...

Map

Union...

source:	http://storm.apache.org/releases/2.0.0-SNAPSHOT/Trident-tutorial.html
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stateless	operators
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Filter ...

Map

Union...

source:	https://ci.apache.org/projects/flink/flink-docs-release-1.0/apis/streaming/index.html
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stateless	operators

17

Filter ...

Map

Union...

source:	http://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams
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stateful	operators

18

Aggregate	information	from	multiple	tuples	
(e.g.,	max,	min,	sum,	...)

Join	tuples	coming	from	2	streams	given	a	certain	predicate

Aggregate

Join
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stateful	operators

19

source:	http://storm.apache.org/releases/2.0.0-SNAPSHOT/Trident-tutorial.html

source:	http://spark.apache.org/docs/latest/streaming-programming-
guide.html#transformations-on-dstreams

source:	http://spark.apache.org/docs/latest/streaming-programming-
guide.html#transformations-on-dstreams
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Wait	a	moment!	

if	streams	are	unbounded,	how	can	we	aggregate	or	join?
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windows and	stateful	analysis	[16]

Stateful	operations	are	done	over	windows:
• Time-based	(e.g.,	tuples	in	the	last	10	minutes)
• Tuple-based	(e.g.,	given	the	last	50	tuples)

21

time
[8:00,9:00)

[8:20,9:20)

[8:40,9:40)

Usually	applications	rely	on	time-based	sliding	windows
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time-based	sliding	window	aggregation	(count)

22

Counter:	4

time
[8:00,9:00)

8:05 8:15 8:22 8:45 9:05

Output:	4

Counter:	1
Counter:	2

Counter:	3

Counter:	3

time

8:05 8:15 8:22 8:45 9:05

[8:20,9:20)

we	assumed	each	source	
produces	and	delivers	a	
timestamp	sorted	stream!
What	happens	if	this	is	not	
the	case?
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windows and	stateful	analysis
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basic	operators	and	user-defined	operators

Besides	a	set	of	basic	operators,	SPEs	usually	allow	the	user	to	define	
ad-hoc	operators	(e.g.,	when	existing	aggregation	are	not	enough)
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sample	query

For	each	vehicle,	raise	an	alert	if	the	speed	of	the	latest	report	is	more	
than	2	times	higher	than	its	average	speed	in	the	last	30	days.

25

time

A 8:00 55.5 X1 Y1 A 8:07 34.3 X3 Y3

A 8:03 70.3 X2 Y2
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Field

vehicle	id

time	(secs)

speed	(Km/h)

X	coordinate

Y	coordinate

Compute	average	
speed	for	each	

vehicle	during	the	
last	30	days

Aggregate

Field
vehicle	id

time	(secs)

avg	speed	(Km/h)

Join

Check	
condition

Filter

Field

vehicle	id

time	(secs)

speed	(Km/h)

Join	on	
vehicle	id

Field
vehicle	id

time	(secs)

avg	speed	(Km/h)

speed	(Km/h)

sample	query
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A J F

sample	query

Notice:
• the	same	semantics	can	be	defined	in	several	ways	(using	different	
operators	and	composing	them	in	different	ways)
• Using	many	basic	building	blocks	can	ease	the	task	of	distributing	
and	parallelizing	the	analysis	(more	in	the	following...)
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Why	data	streaming,	then?

Expressive

Online

Parallel	&	
Distributed
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Expressive

Online

Parallel	&	
Distributed

A F M

A F M

A F M

A F M

F
M

A

A

A

F

F
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Sample	query	that	
e.g.	validates	data	/	
raises	alarms...
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1. Distributed	deployment
2. Parallel	deployment
3. Ordering	and	determinism
4. Shared-nothing	vs	shared-memory	parallelism
5. Load	balancing
6. Elasticity
7. Fault	tolerance
8. Data	sharing

31

Challenges	and	research	questions
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Before	we	start...	

32

Following	examples	are	from	vehicular	networks

Road-side	unit
RSU Vehicle

Server

The	data	streaming	paradigm	and	its	use	in	Fog	architecturesVincenzo	Gulisano



1	- Distributed	deployment	– where	to	place	a	given	operator?	[17,4,18,19]

33

M
?
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2	- Parallel	deployment	– how	do	we	parallelize	the	analysis? [20,21]

34

M

M A

A
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M

M A

A

A 8:00 55.5 X1 Y1

A 8:07 34.3 X3 Y3

A 8:03 70.3 X2 Y2

A 8:00 55.5 X1 Y1

A 8:07 34.3 X3 Y3

A 8:03 70.3 X2 Y2

What	if	tuple	with	
timestamp	8:00	
arrives	after	tuple	
with	timestamp	8:07?

3	– Ordering	and	determinism	[22,23,24]
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4	– shared-nothing	vs.	shared-memory	parallelism	[25]

36

M

M

...

A

A
J

...

How	to	take	advantage	of	multi-core	
architectures?

How	to	boost	inter-node	parallelism	
and	intra-node	parallelism?
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5	– load	balancing	&	state	transfer	[20,26]

37

If	we	shift	the	processing	of	a	certain	subset	of	
tuples	from	node	A	to	node	B,	how	do	transfer	
its	previous	state?

M
A

M
A
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6	– elasticity	[20,27]

38

How	/	when	to	provision	or	
decommission	new	resources	depending	
on	the	analysis’	costs	fluctuations?

J

The	data	streaming	paradigm	and	its	use	in	Fog	architectures

J J

J
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7	– fault	tolerance	[16,	28,	29]

39

How	to	replace	a	failed	node	minimizing	
recovery	time	(making	it	transparent	to	
the	end	user)?

The	data	streaming	paradigm	and	its	use	in	Fog	architectures

J

J

J

J

J

J
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8	– data	sharing	(differential	privacy)	[2,30,31,32]

40

How	to	prevent	privacy	leaks?

Suppose	we	are	interested	in	publishing	vehicles’	
average	speed	over	a	window	of	one	hour...

We	could	aggregate	by	RSU!
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8	– data	sharing	(differential	privacy)

41

Wait	a	moment!	
what if	a	single	vehicle	is	
connected	to	a	certain	RSU?

Whether	a	certain	mechanism	preserves	or	not	the	privacy	
of	the	underlying	data	depends	on	the	knowledge	of	the	
adversary

Differential	privacy	assumes	the	worst	case	scenario!

The	data	streaming	paradigm	and	its	use	in	Fog	architecturesVincenzo	Gulisano



Agenda

• Motivation
• The	data	streaming	processing	paradigm
• Challenges	and	research	questions
• Conclusions
• Bibliography

Vincenzo	Gulisano The	data	streaming	paradigm	and	its	use	in	Fog	architectures 42



Millions	of	years	
of	evolution

Millions	of	
sensors

• Store	information
• Iterate	multiple	times	over	data
• Think,	do	not	rush	through	decisions

• ”Hard-wired”	routines
• Real-time	decisions
• High-throughput	/	low-latency

Should	I	(really)	
have	an	extra	
piece	of	cake?

Danger!!!	
Run!!!

Humans
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Years	/	Decades	
of	evolution

Millions	of	
sensors

What	traffic	
congestion	
patterns	can	I	
observe	
frequently?

Don’t	take	
over,	car	in	
opposite	lane!

• Store	information
• Iterate	multiple	times	over	data
• Think,	do	not	rush	through	decisions

Databases,	data	mining	
techniques...

Data	streaming,	distributed	
and	parallel	analysis

• Continuous	analysis
• Real-time	decisions
• High-throughput	/	low-latency

Computers
(cyber-physical	/	IoT	systems)
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